

http://www.RinkyDinkElectronics.com/ (C)2014 Rinky-Dink Electronics, Henning Karlsen

MCP4725
MCP4725 I2C DAC Arduino and chipKit library

Manual

Library Manual: MCP4725 Page 1

 Introduction:
This library has been made to easily interface and use the MCP4725 DAC with an Arduino or
chipKit.

This library will default to I2C Fast Mode (400 KHz) when using the hardware I2C interface.

The library has not been tested in combination with the Wire library and I have no idea if
they can share pins. Do not send me any questions about this. If you experience problems with
pin-sharing you can move the MCP4725 SDA and SCL pins to any available pins on your
development board. This library will in this case fall back to a software-based, TWI-/I2C-like
protocol which will require exclusive access to the pins used.

It should be noted that the output voltage from the MCP4725 is referenced to the operating
voltage of the chip. If your operating voltage is below/above nominal the output will also be
below/above what you expect from the set value.

If you are using a chipKit Uno32 or uC32 and you want to use the hardware I2C interface you
must remember to set the JP6 and JP8 jumpers to the I2C position (closest to the analog pins).

From the MCP4725 datasheet:

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

The MCP4725 is a low-power, high accuracy, single channel, 12-bit buffered
voltage output Digital-to-Analog Convertor (DAC) with non-volatile memory
(EEPROM). Its on-board precision output amplifier allows it to achieve rail-to-
rail analog output swing.

The DAC input and configuration data can be programmed to the non-volatile memory
(EEPROM) by the user using I2C interface command. The non-volatile memory feature
enables the DAC device to hold the DAC input code during power-off time, and the
DAC output is available immediately after power-up. This feature is very useful
when the DAC device is used as a supporting device for other devices in the
network.

The device includes a Power-On-Reset (POR) circuit to ensure reliable power-up
and an on-board charge pump for the EEPROM programming voltage. The DAC reference
is driven from VDD directly. In power-down mode, the output amplifier can be
configured to present a low, medium, or high resistance output load.

The MCP4725 has an external A0 address pin. This A0 pin can be tied to VDD or VSS
of the user’s application board.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: MCP4725 Page 2

Structures:

MCP4725_Status;
Structure to check the status of the DAC after calling getStatus().

Variables: currentValue : The value of the DAC output

currentVoltage : The calculated output voltage based on the DAC value
currentPowerState : The current power down mode of the DAC
startupValue : The startup/power-on value of the DAC output
startupPowerState : The startup/power-on power down mode of the DAC

Usage: MCP4725_Status s; // Define a structure named s of the MCP4725_Status-class

Notes: The values are updated only when calling getStatus().

Defined Literals:

Part number
For use with setDevice()

MCP4725A0:
MCP4725A1:
MCP4725A2:
MCP4725A3:

 0x60
0x62
0x64
0x66

Power states

For use with setPowerDown() and storePowerDown()

MCP4725_POWERDOWN_OFF:
MCP4725_POWERDOWN_1K:

MCP4725_POWERDOWN_100K:
MCP4725_POWERDOWN_500K:
MCP4725_POWERDOWN_UNK:

 0x00
0x01
0x02
0x03
0xFF

Voltage

Can be used with setVoltage() and storeVoltage()

MAX_VOLTAGE: 5.00f (AVR microcontrollers)
3.30f (ARM and PIC32 microcontrollers)

Library Manual: MCP4725 Page 3

Functions:

MCP4725(SDA, SCL);
The main class constructor.

Parameters: SDA: Pin connected to the SDA-pin of the MCP4725

SCL: Pin connected to the SCL-pin of the MCP4725

Usage: MCP4725 dac(SDA, SCL); // Start an instance of the MCP4725 class using the hardware I2C interface

Notes: You can connect the MCP4725 to any available pin but if you use any other than hardware I2C pin the
library will fall back to a software-based, TWI-like protocol which will require exclusive access to
the pins used, and you will also have to use appropriate, external pull-up resistors on the data and
clock signals. External pull-up resistors are always needed on chipKit boards.

setDevice([device]);

Select what device type you are using.

Parameters: Device: <Optional>

 MCP4725A0 (Default)
 MCP4725A1
 MCP4725A2
 MCP4725A3

Returns: Nothing

Usage: dac.setDevice(MCP4725A1); // Select the MCP4725A1 device type

Notes: More information about the four different device types can be found in the MCP4725 datasheet.
If you need to change the device type you must do so before calling begin().

begin([channel]);

Get current time as a string.

Parameters: channel: <Optional>

 0 (default)
 1

Returns: Nothing

Usage: dac.begin(); // Initialize the library for use

Notes: Which channel you need to select depends upon how the A0 pin of the MCP4725 is connected.
 A0 connected to VSS = channel 0
 A0 connected to VDD = channel 1

getStatus();

Get the current status from the MCP4725.

Parameters: None

Returns: MCP4725_Status structure.

Usage: s = dac.getStatus(); // Get the current DAC status and store it in s

Library Manual: MCP4725 Page 4

setValue(value);

Write a 12-bit value to the DAC.

Parameters: value: 0-4095

Returns: Nothing

Usage: dac.setValue(0); // Set the value to 0

setVoltage(voltage);

Write a specific voltage to the DAC.

Parameters: voltage: 0.00 to 5.00 (AVR microcontrollers)

 0.00 to 3.30 (ARM and PIC32 microcontrollers)

Returns: Nothing

Usage: dac.setVoltage(1.25f); // Set the DAC output to 1.25v

Notes: In order for the output voltage to be exactly what you specify the operating voltage of the MCP4725
must be exactly 5.00v for AVR microcontrollers or 3.30v for ARM and PIC32 microcontrollers. Any
deviation in the operating voltage of the MCP4725 will result in a subsequent deviation in the
output voltage.

setPowerDown(value);

Set the power down mode of the MCP4725.

Parameters: value: MCP4725_POWERDOWN_OFF, MCP4725_POWERDOWN_1K, MCP4725_POWERDOWN_100K or MCP4725_POWERDOWN_500K

Returns: Nothing

Usage: dac.setPowerDown(MCP4725_POWERDOWN_OFF); // Disable power down mode and restore normal output

Notes: setPowerDown() will set the output of the MCP4725 to 0.
setValue() and setVoltage() will automatically set the power down mode to MCP4725_POWERDOWN_OFF.

storeValue(value);

Write a 12-bit value to the DAC and store it in the internal EEPROM as the startup/power-on value.

Parameters: value: 0-4095

Returns: Nothing

Usage: dac.storeValue(0); // Set the value to 0 and store that as the default power-on value as well

storeVoltage(voltage);

Write a specific voltage to the DAC and store it in the internal EEPROM as the startup/power-on value.

Parameters: voltage: 0.00 to 5.00 (AVR microcontrollers)

 0.00 to 3.30 (ARM and PIC32 microcontrollers)

Returns: Nothing

Usage: dac.storeVoltage(1.25f); // Set the DAC output to 1.25v and store that as the default power-on value

Notes: In order for the output voltage to be exactly what you specify the operating voltage of the MCP4725
must be exactly 5.00v for AVR microcontrollers or 3.30v for ARM and PIC32 microcontrollers. Any
deviation in the operating voltage of the MCP4725 will result in a subsequent deviation in the
output voltage.

storePowerDown(value);

Set the power down mode of the MCP4725 and store it in the internal EEPROM as the startup/power-on value.

Parameters: value: MCP4725_POWERDOWN_OFF, MCP4725_POWERDOWN_1K, MCP4725_POWERDOWN_100K or MCP4725_POWERDOWN_500K

Returns: Nothing

Usage: dac.storePowerDown(MCP4725_POWERDOWN_1K); // Enable power down and set it as the power-up default

Notes: storePowerDown() will set the default output of the MCP4725 to 0.
storeValue() and storeVoltage() will automatically set the default power down mode to
MCP4725_POWERDOWN_OFF.

