
http://www.RinkyDinkElectronics.com/ (C)2019 Rinky-Dink Electronics, Henning Karlsen

SPIflash
SPI flash chip Arduino and chipKit library

Manual

Library Manual: SPIflash Page 1

Introduction:
The idea for this library came to me long ago when I noticed the empty footprint on some TFT

display modules. I thought it would be a good idea to have some extra storage space available

for projects.

This library provides basic support for handling SPI flash memory chips. It also supports a

very simple, read-only file system that can be used for storing text files and text (string)

resource files. The file system also handles image and audio data for add-on libraries.

The included FlashUploader tool (sorry, Windows only) can be used to upload files to the file

system on the chip or create files that can be uploaded from a SD card to the flash chip.

Note that the FlashUploader tool includes file types that are not supported directly by this

library but requires add-on libraries.

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

SUPPORTED CHIPS:
Manufacturer Model Size (Mbits) Size (K/Mbytes) Tested Package

SST / Microchip SST25VF020B 2 Mbits 256 Kbytes SOIC-8

SST / Microchip SST25VF040B 4 Mbits 512 Kbytes SOIC-8

SST / Microchip SST25VF080B 8 Mbits 1 Mbyte SOIC-8

SST / Microchip SST25VF016B 16 Mbits 2 Mbytes SOIC-8

SST / Microchip SST25VF032B 32 Mbits 4 Mbytes SOIC-8

SST / Microchip SST25VF064C 64 Mbits 8 Mbytes SOIC-16

Winbond W25Q80BV 8 Mbits 1 Mbyte SOIC-8

Winbond W25Q16BV 16 Mbits 2 Mbytes SOIC-8

Winbond W25Q32BV 32 Mbits 4 Mbytes SOIC-8

Winbond W25Q64FV 64 Mbits 8 Mbytes SOIC-8

Winbond W25Q128BV 128 Mbits 16 Mbytes SOIC-16

Winbond W25Q128FV 128 Mbits 16 Mbytes SOIC-8

Winbond W25Q256FV 256 Mbits 32 Mbytes SOIC-16

MXIC MX25L1605D 16 Mbits 2 Mbytes SOIC-8

MXIC MX25L3205D 32 Mbits 4 Mbytes SOIC-8

MXIC MX25L6405D 64 Mbits 8 Mbytes SOIC-16

The library checks the vendor and chip ID on initialization so chips not on this list will not

work.

INCLUDED EXAMPLE DATASETS:
These files can be found in the /tools/FlashUploader/Example Datasets folder.

Full name Short name Minimum Flash Chip Size (Mbits)

Demo Data.* DEMO.SFD 2 Mbits

Earth_Map.* EARTH.SFD 32 Mbits

Earth_Map_HR.* EARTH_HR.SFD 128 Mbits

TestImages_240x320.* 240X320.SFD 8 Mbits

TestImages_240x400.* 240X400.SFD 8 Mbits

TestImages_320x240.* 320X240.SFD 8 Mbits

TestImages_400x240.* 400X240.SFD 8 Mbits

TestImages_480x272.* 480X272.SFD 8 Mbits

TestImages_800x480.* 800X480.SFD 32 Mbits

TestImages_Mono_For_Colordisplays.* MONO_C.SFD 2 Mbits

TestImages_Mono.* MONO.SFD 2 Mbits

TestImages_Mono_Large.* MONO_L.SFD 2 Mbits

If a specific dataset is required by an example sketch it will be noted in the opening

comments of that sketch.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: SPIflash Page 2

DEFINED LITERALS:

General errors

Errors returned from most functions if something went wrong.

ERR_FILETYPE_INCORRECT:

ERR_FILE_DOES_NOT_EXIST:

ERR_BUFFER_OVERFLOW:

ERR_OUT_OF_RANGE:

ERR_FILE_NOT_OPEN:

ERR_FILE_ALREADY_OPEN:

ERR_NO_AVAILABLE_HANDLES:

ERR_SEEK_PAST_FILE_START:

ERR_SEEK_PAST_FILE_END:

ERR_AT_EOF:

ERR_ACCESS_IS_RESTRICTED:

ERR_NO_ERROR:

 0xFFFF

0xFFFE

0xFFFD

0xFFFC

0xFFFB

0xFFFA

0xFFF9

0xFFF8

0xFFF7

0xFFF6

0xFFF5

0x0000 (= OK)

getFileSize() errors

Due to the size of the return variable from getFileSize() it needs its own set of error messages.

ERROR_FILE_DOES_NOT_EXIST:

ERROR_ACCESS_IS_RESTRICTED:

 0xFFFFFFFE

0xFFFFFFF5

INFORMATIONAL VARIABLES:

JEDEC Information

Can be used to access the JEDEC information from the currently connected flash chip.

ID_manufacturer:

ID_type:

ID_device:

 Manufacturer ID

Chip type ID

Device specific ID

Text Information

Can be used to access the information from the currently connected flash chip in text form.

Text_manufacturer:

Text_type:

Text_device:

Capacity:

 Contains the name of the chip manufacturer

Device type (Currently only “SPI Serial Flash”)

Model name

Size of the flash chip in Mbits (integer)

DEFINED FILE TYPES:

File types

Binary:

Text:

Text Resource:

Color Image:

Monochrome image (for use on color screens):

Monochrome image (for use on monochrome screens):

Audio:

Custom 1:

Custom 16:

 1

2

3

4

5

6

7

32

47

Library Manual: SPIflash Page 3

FUNCTIONS:

SPIflash;

The main class constructor when using the hardware SPI pins with the default SS pin.

Parameters: none

Usage: SPIflash myFlash; // Start an instance of the SPIflash class

Notes: Note that there are no parentheses when using this constructor.

SPIflash(SS);

The main class constructor when using the hardware SPI pins with a specific SS pin.

Parameters: SS: Pin for slave select / chip enable (CE)

Usage: SPIflash myFlash(9); // Start an instance of the SPIflash class

SPIflash(SI, SO, SCK, CE);

The main class constructor when using a software SPI communication protocol (i.e. Not using the hardware SPI pins).

Parameters: SI: Pin for serial data to the chip

SO: Pin for serial data from the chip

SCK: Pin for serial clock signal

CE: Pin for chip enable / slave select (SS)

Usage: SPIflash myFlash(5, 6, 7, 4); // Start an instance of the SPIflash class

Notes: Using software SPI is a lot slower than hardware SPI...

begin();

Initialize the instance for use.

Parameters: None

Usage: myFlash.begin(); // Initialize the myFlash object

readStatus();

Returns the current status byte from the chip.

Parameters: None

Returns: (uint8_t) Current status byte

Usage: status = myFlash.readStatus(); // Read the status byte

readPage(page);

Read a complete 256 byte page from the chip into the pre-defined buffer array.

Parameters: page: Number of the page you wish to read

Usage: myFlash.readPage(0x1FF); // Read page 0x1FF into the buffer

Notes: Access the buffer through myFlash.buffer[]

writePage(page);

Write a complete 256 byte page from the pre-defined buffer array into the chip.

Parameters: page: Number of the page you wish to write

Usage: myFlash.writePage(0x1FF); // Write the contents of the buffer to page 0x1FF in the chip

Notes: Access the buffer through myFlash.buffer[]

waitForReady();

Wait until an already started asynchronous operation has finished.

Parameters: None

Usage: myFlash.waitForReady(); // Wait for the chip to finish the current operation

Notes: This function will wait until the BUSY flag (bit 0) of the chip status register clears.

eraseChip();

Erase all the data currently stored in the chip.

Parameters: None

Usage: myFlash.eraseChip(); // Start a chip erase operation

Notes: Some chips take quite a while to erase. This function will not return until the erase operation has

finished.

Library Manual: SPIflash Page 4

IMPORTANT:
The following functions will only work when the data on the chip has been formatted with the

proprietary file system created by the FlashUploader application.

Using these functions on other data may cause unpredictable results and is not supported.

Please note that the file system is currently read-only.

fileOpen(fileID);

Open a file for reading.

Parameters: fileID: ID of the file you want to open for reading

Returns: (uint16_t) filehandle or a general error (see defined literals)

Usage: handle = myFlash.fileOpen(8); // Attempt to open the file with ID #8 for reading

Notes: The SPIflash library can handle 5 simultaneously open files.

You cannot open Text Resource files with fileOpen(). Use readTextResource() to access those files.

fileClose(filehandle);

Close a previously opened file.

Parameters: filehandle: Filehandle of the file you want to close

Returns: (uint16_t) ERR_NO_ERROR (0) or a general error (see defined literals)

Usage: result = myFlash.fileClose(handle); // Attempt to close a file

restrictAccess(filehandle);

Restrict access to the file system to a single file. Useful when you need time-critical access to a file.

Parameters: filehandle: Filehandle of the file you want to have exclusive access to

Returns: (uint16_t) ERR_NO_ERROR (0) or a general error (see defined literals)

Usage: result = myFlash.restrictAccess(handle); // Restrict access to the file system

Notes: The file must be open before you can restrict access.

unrestrictAccess();

Remove file system restrictions set by restrictAccess().

Parameters: None

Usage: myFlash.unrestrictAccess(); // Remove restrictions

isRestricted();

Check if there is a file system restriction in place.

Parameters: None

Returns: (uint8_t) Filehandle of the file with exclusive access or 0xFF if no restrictions are in place

Usage: result = myFlash.isRestricted(); // Check if a restriction is in place

fileSeek(filehandle, offset);

Change the position for the next read within a file.

Parameters: filehandle: Filehandle of the file you want to manipulate

offset: Number of bytes to change the position by

 Positive values move the pointer towards the end of the file while negative values

 Moves the pointer towards the start of the file. 0 will set the position to the start

 of the file.

Returns: (uint16_t) ERR_NO_ERROR (0) or a general error (see defined literals)

Usage: result = myFlash.fileSeek(handle, 10); // Move the pointer 10 bytes towards the end of the file

fileRead(filehandle, buffer, buffersize);

Read data from a previously opened file.

Parameters: filehandle: Filehandle of the file you want to read from

buffer: Buffer to put the read data into

buffersize: Size of the buffer in bytes

Returns: (uint16_t) number of bytes read or a general error (see defined literals)

Usage: result = myFlash.fileRead(handle, buf, sizeof(buf)); // Read data into the buf array

Notes: This function will read data until the buffer is full or EOF is encountered.

If reading from text files the buffer will always contain a string terminator (0 byte) so if the

buffer size is 80 bytes you will never get more than 79 characters (+ the terminator) back.

Library Manual: SPIflash Page 5

fileReadLn(filehandle, buffer, buffersize);

Read a line of text from a previously opened file.

Parameters: filehandle: Filehandle of the file you want to read from

buffer: Buffer to put the read data into

buffersize: Size of the buffer in bytes

Returns: (uint16_t) number of bytes read or a general error (see defined literals)

Usage: result = myFlash.fileReadLn(handle, buf, sizeof(buf)); // Read text into the buf array

Notes: This function will read data until the buffer is full, a line break or EOF is encountered.

DOS/Windows (CR+LF), Mac (CR) and Unix (LF) line breaks should all be handled correctly.

When reading from text files the buffer will always contain a string terminator (0 byte) so if the

buffer size is 80 bytes you will never get more than 79 characters (+ the terminator) back.

If the buffer was too small to read the entire line the function will return ERR_BUFFER_OVERFLOW.

getFileType(fileID);

Get the file type of a file.

Parameters: fileID: ID of the file you want to find the file type of

Returns: (uint16_t) file type or a general error (see defined literals)

Usage: ftype = myFlash.getFileType(4); // Get the file type for file ID #4

getFileSize(fileID);

Get the size of a file.

Parameters: fileID: ID of the file you want to find the file size of

Returns: (uint32_t) file size in bytes or a getFileSize() specific error (see defined literals)

Usage: fsize = myFlash.getFileSize(0); // Get the file size for file ID #0

readFileNote(fileID, buffer);

Get the note associated with a file.

Parameters: fileID: ID of the file you want to get the file note for

buffer: Buffer to store the file note in

Returns: (uint16_t) ERR_NO_ERROR (0) or a general error (see defined literals)

Usage: result = myFlash.readFileNote(100, buf); // Get the file note for file ID #100 and store it in buf

Notes: The buffer must be at least 17 bytes long. File notes can be up to 16 characters and will be

terminated with a string terminator (0 byte).

getImageXSize(fileID);

Get the X size of an image.

Parameters: fileID: ID of the file containing the image you want to get the X size for

Returns: (uint16_t) X size in pixels or a general error (see defined literals)

Usage: Xsize = myFlash.getImageXSize(100); // Get the X size for file ID #100

Notes: This function will return ERR_FILETYPE_INCORRECT if you try to get the size of a non-image file.

getImageYSize(fileID);

Get the Y size of an image.

Parameters: fileID: ID of the file containing the image you want to get the Y size for

Returns: (uint16_t) Y size in pixels or a general error (see defined literals)

Usage: Ysize = myFlash.getImageYSize(100); // Get the Y size for file ID #100

Notes: This function will return ERR_FILETYPE_INCORRECT if you try to get the size of a non-image file.

getAudioSamplerate(fileID);

Get the sample rate for an audio sample.

Parameters: fileID: ID of the file containing the audio sample you want the sample rate for

Returns: (uint16_t) sample rate in Hz or a general error (see defined literals)

Usage: bitrate = myFlash.getAudioSamplerate(14); // Get the sample rate for file ID #14

Notes: This function will return ERR_FILETYPE_INCORRECT if you try to get the size of a non-audio file.

Library Manual: SPIflash Page 6

getAudioBPS(fileID);

Get the bits per sample for an audio sample.

Parameters: fileID: ID of the file containing the audio sample you want the bits per sample for

Returns: (uint16_t) bits per sample or a general error (see defined literals)

Usage: bps = myFlash.getAudioBPS(14); // Get the bits per sample for file ID #14

Notes: This function will return ERR_FILETYPE_INCORRECT if you try to get the size of a non-audio file.

getAudioChannels(fileID);

Get the number of channels for an audio sample.

Parameters: fileID: ID of the file containing the audio sample you want the number of channels for

Returns: (uint16_t) number of channels or a general error (see defined literals)

Usage: channels = myFlash.getAudioChannels(14); // Get the number of channels for file ID #14

Notes: This function will return ERR_FILETYPE_INCORRECT if you try to get the size of a non-audio file.

readTextResource(fileID, resID, buffer, buffersize);

Get a string from a text resource file.

Parameters: fileID: ID of the file you want to get the string from

resID: Resource ID within the file

buffer: Buffer to put the read data into

buffersize: Size of the buffer in bytes

Returns: (uint16_t) ERR_NO_ERROR (0) or a general error (see defined literals)

Usage: result = myFlash.readTextResource(2, 4, buf, sizeof(buf)); // Read string #4 from file #2

Note: Text Resource files can only be accessed with this function.

If the buffer is too small for contain the entire string the result will be ERR_BUFFER_OVERFLOW.

Remember that strings are terminated with a 0 byte so the buffer should be at least 1 byte longer

than the expected length of the text.

